Problem: fst(0(),Z) -> nil() fst(s(),cons(Y)) -> cons(Y) from(X) -> cons(X) add(0(),X) -> X add(s(),Y) -> s() len(nil()) -> 0() len(cons(X)) -> s() Proof: Bounds Processor: bound: 1 enrichment: match automaton: final states: {8,7,6,5} transitions: s1() -> 8,7 01() -> 8* cons1(2) -> 6,5 cons1(4) -> 6,5 cons1(1) -> 6,5 cons1(3) -> 6,5 nil1() -> 5* fst0(3,1) -> 5* fst0(3,3) -> 5* fst0(4,2) -> 5* fst0(4,4) -> 5* fst0(1,2) -> 5* fst0(1,4) -> 5* fst0(2,1) -> 5* fst0(2,3) -> 5* fst0(3,2) -> 5* fst0(3,4) -> 5* fst0(4,1) -> 5* fst0(4,3) -> 5* fst0(1,1) -> 5* fst0(1,3) -> 5* fst0(2,2) -> 5* fst0(2,4) -> 5* 00() -> 1* nil0() -> 2* s0() -> 3* cons0(2) -> 4* cons0(4) -> 4* cons0(1) -> 4* cons0(3) -> 4* from0(2) -> 6* from0(4) -> 6* from0(1) -> 6* from0(3) -> 6* add0(3,1) -> 7* add0(3,3) -> 7* add0(4,2) -> 7* add0(4,4) -> 7* add0(1,2) -> 7* add0(1,4) -> 7* add0(2,1) -> 7* add0(2,3) -> 7* add0(3,2) -> 7* add0(3,4) -> 7* add0(4,1) -> 7* add0(4,3) -> 7* add0(1,1) -> 7* add0(1,3) -> 7* add0(2,2) -> 7* add0(2,4) -> 7* len0(2) -> 8* len0(4) -> 8* len0(1) -> 8* len0(3) -> 8* 1 -> 7* 2 -> 7* 3 -> 7* 4 -> 7* problem: Qed