Problem:
fst(0(),Z) -> nil()
fst(s(),cons(Y)) -> cons(Y)
from(X) -> cons(X)
add(0(),X) -> X
add(s(),Y) -> s()
len(nil()) -> 0()
len(cons(X)) -> s()
Proof:
Bounds Processor:
bound: 1
enrichment: match
automaton:
final states: {8,7,6,5}
transitions:
s1() -> 8,7
01() -> 8*
cons1(2) -> 6,5
cons1(4) -> 6,5
cons1(1) -> 6,5
cons1(3) -> 6,5
nil1() -> 5*
fst0(3,1) -> 5*
fst0(3,3) -> 5*
fst0(4,2) -> 5*
fst0(4,4) -> 5*
fst0(1,2) -> 5*
fst0(1,4) -> 5*
fst0(2,1) -> 5*
fst0(2,3) -> 5*
fst0(3,2) -> 5*
fst0(3,4) -> 5*
fst0(4,1) -> 5*
fst0(4,3) -> 5*
fst0(1,1) -> 5*
fst0(1,3) -> 5*
fst0(2,2) -> 5*
fst0(2,4) -> 5*
00() -> 1*
nil0() -> 2*
s0() -> 3*
cons0(2) -> 4*
cons0(4) -> 4*
cons0(1) -> 4*
cons0(3) -> 4*
from0(2) -> 6*
from0(4) -> 6*
from0(1) -> 6*
from0(3) -> 6*
add0(3,1) -> 7*
add0(3,3) -> 7*
add0(4,2) -> 7*
add0(4,4) -> 7*
add0(1,2) -> 7*
add0(1,4) -> 7*
add0(2,1) -> 7*
add0(2,3) -> 7*
add0(3,2) -> 7*
add0(3,4) -> 7*
add0(4,1) -> 7*
add0(4,3) -> 7*
add0(1,1) -> 7*
add0(1,3) -> 7*
add0(2,2) -> 7*
add0(2,4) -> 7*
len0(2) -> 8*
len0(4) -> 8*
len0(1) -> 8*
len0(3) -> 8*
1 -> 7*
2 -> 7*
3 -> 7*
4 -> 7*
problem:
Qed